Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 16.524
1.
Proc Natl Acad Sci U S A ; 121(22): e2316176121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38771878

The striato-nigral (Str-SN) circuit is composed of medium spiny neuronal projections that are mainly sent from the striatum to the midbrain substantial nigra (SN), which is essential for regulating motor behaviors. Dysfunction of the Str-SN circuitry may cause a series of motor disabilities that are associated with neurodegenerative disorders, such as Huntington's disease (HD). Although the etiology of HD is known as abnormally expanded CAG repeats of the huntingtin gene, treatment of HD remains tremendously challenging. One possible reason is the lack of effective HD model that resembles Str-SN circuitry deficits for pharmacological studies. Here, we first differentiated striatum-like organoids from human pluripotent stem cells (hPSCs), containing functional medium spiny neurons (MSNs). We then generated 3D Str-SN assembloids by assembling striatum-like organoids with midbrain SN-like organoids. With AAV-hSYN-GFP-mediated viral tracing, extensive MSN projections from the striatum to the SN are established, which formed synaptic connection with GABAergic neurons in SN organoids and showed the optically evoked inhibitory postsynaptic currents and electronic field potentials by labeling the striatum-like organoids with optogenetic virus. Furthermore, these Str-SN assembloids exhibited enhanced calcium activity compared to that of individual striatal organoids. Importantly, we further demonstrated the reciprocal projection defects in HD iPSC-derived assembloids, which could be ameliorated by treatment of brain-derived neurotrophic factor. Taken together, these findings suggest that Str-SN assembloids could be used for identifying MSN projection defects and could be applied as potential drug test platforms for HD.


Huntington Disease , Organoids , Humans , Huntington Disease/pathology , Huntington Disease/metabolism , Organoids/pathology , Organoids/metabolism , Substantia Nigra/pathology , Substantia Nigra/metabolism , Corpus Striatum/pathology , Corpus Striatum/metabolism , Neurons/metabolism , Neurons/pathology , Cell Differentiation , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Pluripotent Stem Cells/metabolism , Optogenetics
2.
Sci Rep ; 14(1): 10621, 2024 05 09.
Article En | MEDLINE | ID: mdl-38729969

Asymptomatic Leucine-Rich Repeat Kinase 2 Gene (LRRK2) carriers are at risk for developing Parkinson's disease (PD). We studied presymptomatic substantia nigra pars compacta (SNc) regional neurodegeneration in asymptomatic LRRK2 carriers compared to idiopathic PD patients using neuromelanin-sensitive MRI technique (NM-MRI). Fifteen asymptomatic LRRK2 carriers, 22 idiopathic PD patients, and 30 healthy controls (HCs) were scanned using NM-MRI. We computed volume and contrast-to-noise ratio (CNR) derived from the whole SNc and the sensorimotor, associative, and limbic SNc regions. An analysis of covariance was performed to explore the differences of whole and regional NM-MRI values among the groups while controlling the effect of age and sex. In whole SNc, LRRK2 had significantly lower CNR than HCs but non-significantly higher volume and CNR than PD patients, and PD patients significantly lower volume and CNR compared to HCs. Inside SNc regions, there were significant group effects for CNR in all regions and for volumes in the associative region, with a trend in the sensorimotor region but no significant changes in the limbic region. PD had reduced volume and CNR in all regions compared to HCs. Asymptomatic LRRK2 carriers showed globally decreased SNc volume and CNR suggesting early nigral neurodegeneration in these subjects at risk of developing PD.


Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Magnetic Resonance Imaging , Melanins , Parkinson Disease , Substantia Nigra , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Female , Middle Aged , Melanins/metabolism , Magnetic Resonance Imaging/methods , Parkinson Disease/genetics , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Parkinson Disease/metabolism , Substantia Nigra/diagnostic imaging , Substantia Nigra/pathology , Substantia Nigra/metabolism , Aged , Heterozygote , Adult , Case-Control Studies
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732120

Adenosine A2A receptor (A2AR) antagonists are the leading nondopaminergic therapy to manage Parkinson's disease (PD) since they afford both motor benefits and neuroprotection. PD begins with a synaptic dysfunction and damage in the striatum evolving to an overt neuronal damage of dopaminergic neurons in the substantia nigra. We tested if A2AR antagonists are equally effective in controlling these two degenerative processes. We used a slow intracerebroventricular infusion of the toxin MPP+ in male rats for 15 days, which caused an initial loss of synaptic markers in the striatum within 10 days, followed by a neuronal loss in the substantia nigra within 30 days. Interestingly, the initial loss of striatal nerve terminals involved a loss of both dopaminergic and glutamatergic synaptic markers, while GABAergic markers were preserved. The daily administration of the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) in the first 10 days after MPP+ infusion markedly attenuated both the initial loss of striatal synaptic markers and the subsequent loss of nigra dopaminergic neurons. Strikingly, the administration of SCH58261 (0.1 mg/kg, i.p. for 10 days) starting 20 days after MPP+ infusion was less efficacious to attenuate the loss of nigra dopaminergic neurons. This prominent A2AR-mediated control of synaptotoxicity was directly confirmed by showing that the MPTP-induced dysfunction (MTT assay) and damage (lactate dehydrogenase release assay) of striatal synaptosomes were prevented by 50 nM SCH58261. This suggests that A2AR antagonists may be more effective to counteract the onset rather than the evolution of PD pathology.


Adenosine A2 Receptor Antagonists , Corpus Striatum , Disease Models, Animal , Parkinson Disease , Receptor, Adenosine A2A , Animals , Adenosine A2 Receptor Antagonists/pharmacology , Adenosine A2 Receptor Antagonists/therapeutic use , Rats , Male , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Receptor, Adenosine A2A/metabolism , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Corpus Striatum/pathology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Triazoles/pharmacology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Sprague-Dawley
4.
Int J Mol Sci ; 25(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38791326

Chronic environmental exposure to toxic heavy metals, which often occurs as a mixture through occupational and industrial sources, has been implicated in various neurological disorders, including Parkinsonism. Vanadium pentoxide (V2O5) typically presents along with manganese (Mn), especially in welding rods and high-capacity batteries, including electric vehicle batteries; however, the neurotoxic effects of vanadium (V) and Mn co-exposure are largely unknown. In this study, we investigated the neurotoxic impact of MnCl2, V2O5, and MnCl2-V2O5 co-exposure in an animal model. C57BL/6 mice were intranasally administered either de-ionized water (vehicle), MnCl2 (252 µg) alone, V2O5 (182 µg) alone, or a mixture of MnCl2 (252 µg) and V2O5 (182 µg) three times a week for up to one month. Following exposure, we performed behavioral, neurochemical, and histological studies. Our results revealed dramatic decreases in olfactory bulb (OB) weight and levels of tyrosine hydroxylase, dopamine, and 3,4-dihydroxyphenylacetic acid in the treatment groups compared to the control group, with the Mn/V co-treatment group producing the most significant changes. Interestingly, increased levels of α-synuclein expression were observed in the substantia nigra (SN) of treated animals. Additionally, treatment groups exhibited locomotor deficits and olfactory dysfunction, with the co-treatment group producing the most severe deficits. The treatment groups exhibited increased levels of the oxidative stress marker 4-hydroxynonenal in the striatum and SN, as well as the upregulation of the pro-apoptotic protein PKCδ and accumulation of glomerular astroglia in the OB. The co-exposure of animals to Mn/V resulted in higher levels of these metals compared to other treatment groups. Taken together, our results suggest that co-exposure to Mn/V can adversely affect the olfactory and nigral systems. These results highlight the possible role of environmental metal mixtures in the etiology of Parkinsonism.


Manganese Compounds , Manganese , Mice, Inbred C57BL , Vanadium , Animals , Mice , Manganese/toxicity , Vanadium/toxicity , Male , Olfactory Bulb/metabolism , Olfactory Bulb/drug effects , Olfactory Bulb/pathology , Dopamine/metabolism , Vanadium Compounds , Oxidative Stress/drug effects , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/chemically induced , alpha-Synuclein/metabolism , Chlorides/toxicity , Chlorides/metabolism , Tyrosine 3-Monooxygenase/metabolism , Aldehydes/metabolism , Substantia Nigra/metabolism , Substantia Nigra/drug effects , Substantia Nigra/pathology , Disease Models, Animal , 3,4-Dihydroxyphenylacetic Acid/metabolism
5.
Behav Brain Res ; 468: 115035, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38703793

Parkinson's Disease is a progressive neurodegenerative disorder characterized by motor symptoms resulting from the loss of nigrostriatal dopaminergic neurons. Kisspeptins (KPs) are a family of neuropeptides that are encoded by the Kiss-1 gene, which exert their physiological effects through interaction with the GPR54 receptor. In the current investigation, we investigated the prospective protective effects of central KP-54 treatments on nigrostriatal dopaminergic neurons and consequent motor performance correlates in 6-hydroxydopamine (6-OHDA)-lesioned rats. Male adult Sprague Dawley rats underwent stereotaxic injection of 6-OHDA into the right medial forebrain bundle to induce hemiparkinsonism. Following surgery, rats received chronic central treatments of nasal or intracerebroventricular KP-54 (logarithmically increasing doses) for seven consecutive days. Motor performance was evaluated seven days post-surgery utilizing the open field test and catalepsy test. The levels of dopamine in the striatum were determined with mass spectrometry. Immunohistochemical analysis was conducted to assess the immunoreactivities of tyrosine hydroxylase (TH) and the GPR54 in the substantia nigra. The dose-response curve revealed a median effective dose value of ≈3 nmol/kg for both central injections. Due to its non-invasive and effective nature, nasal administration was utilized in the second phase of our study. Chronic administration of KP-54 (3nmol/kg, nasally) significantly protected 6-OHDA-induced motor deficits. Nasal KP-54 attenuated the loss of nigrostriatal dopaminergic neurons induced by 6-OHDA. Additionally, significant correlations were observed between motor performance and nigrostriatal dopamine levels. Immunohistochemical analysis demonstrated the localization of the GPR54 within TH-positive nigral cells. These findings suggest the potential efficacy of central KP-54 on motor impairments in hemiparkinsonism.


Administration, Intranasal , Corpus Striatum , Dopamine , Dopaminergic Neurons , Kisspeptins , Oxidopamine , Parkinsonian Disorders , Rats, Sprague-Dawley , Substantia Nigra , Animals , Male , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Dopamine/metabolism , Oxidopamine/pharmacology , Rats , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Kisspeptins/administration & dosage , Kisspeptins/pharmacology , Kisspeptins/metabolism , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Disease Models, Animal , Motor Activity/drug effects , Tyrosine 3-Monooxygenase/metabolism
6.
Int J Mol Sci ; 25(10)2024 May 18.
Article En | MEDLINE | ID: mdl-38791561

This work aimed to study the effect of repeated exposure to low doses of ozone on alpha-synuclein and the inflammatory response in the substantia nigra, jejunum, and colon. Seventy-two male Wistar rats were divided into six groups. Each group received one of the following treatments: The control group was exposed to air. The ozone groups were exposed for 7, 15, 30, 60, and 90 days for 0.25 ppm for four hours daily. Afterward, they were anesthetized, and their tissues were extracted and processed using Western blotting, immunohistochemistry, and qPCR. The results indicated a significant increase in alpha-synuclein in the substantia nigra and jejunum from 7 to 60 days of exposure and an increase in NFκB from 7 to 90 days in the substantia nigra, while in the jejunum, a significant increase was observed at 7 and 15 days and a decrease at 60 and 90 days for the colon. Interleukin IL-17 showed an increase at 90 days in the substantia nigra in the jejunum and increases at 30 days and in the colon at 15 and 90 days. Exposure to ozone increases the presence of alpha-synuclein and induces the loss of regulation of the inflammatory response, which contributes significantly to degenerative processes.


Colon , Jejunum , Ozone , Rats, Wistar , Substantia Nigra , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , Ozone/adverse effects , Jejunum/metabolism , Jejunum/drug effects , Jejunum/pathology , Male , Rats , Colon/metabolism , Colon/drug effects , Colon/pathology , Substantia Nigra/metabolism , Substantia Nigra/drug effects , Substantia Nigra/pathology , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/pathology , NF-kappa B/metabolism , Interleukin-17/metabolism
7.
Neurosci Biobehav Rev ; 161: 105690, 2024 Jun.
Article En | MEDLINE | ID: mdl-38678736

Dopamine's role in addiction has been extensively studied, revealing disruptions in its functioning throughout all addiction stages. Neuromelanin in the substantia nigra (SN) may reflect dopamine auto-oxidation, and can be quantified using neuromelaninsensitive magnetic resonance imaging (neuromelanin-MRI) in a non-invasive manner.In this pre-registered systematic review, we assess the current body of evidence related to neuromelanin levels in substance use disorders, using both post-mortem and MRI examinations. The systematic search identified 10 relevant articles, primarily focusing on the substantia nigra. An early-stage meta-analysis (n = 6) revealed varied observations ranging from standardized mean differences of -3.55 to +0.62, with a pooled estimate of -0.44 (95 % CI = -1.52, 0.65), but there was insufficient power to detect differences in neuromelanin content among individuals with substance use disorders. Our gap analysis highlights the lack of sufficient replication studies, with existing studies lacking the power to detect a true difference, and a complete lack of neuromelanin studies on certain substances of clinical interest. We provide recommendations for future studies of dopaminergic neurobiology in addictions and related psychiatric comorbidities.


Melanins , Substance-Related Disorders , Humans , Melanins/metabolism , Substance-Related Disorders/metabolism , Substance-Related Disorders/diagnostic imaging , Substantia Nigra/metabolism , Substantia Nigra/diagnostic imaging , Magnetic Resonance Imaging
8.
Ecotoxicol Environ Saf ; 276: 116280, 2024 May.
Article En | MEDLINE | ID: mdl-38574648

In recent years, accumulating evidence supports that occupational exposure to solvents is associated with an increased incidence of Parkinson's disease (PD) among workers. The neurotoxic effects of 1-bromopropane (1-BP), a widely used new-type solvent, are well-established, yet data on its relationship with the etiology of PD remain limited. Simultaneously, high-fat consumption in modern society is recognized as a significant risk factor for PD. However, whether there is a synergistic effect between a high-fat diet and 1-BP exposure remains unclear. In this study, adult C57BL/6 mice were fed either a chow or a high-fat diet for 18 weeks prior to 12-week 1-BP treatment. Subsequent neurobehavioral and neuropathological examinations were conducted to assess the effects of 1-BP exposure on parkinsonian pathology. The results demonstrated that 1-BP exposure produced obvious neurobehavioral abnormalities and dopaminergic degeneration in the nigral region of mice. Importantly, a high-fat diet further exacerbated the impact of 1-BP on motor and cognitive abnormalities in mice. Mechanistic investigation revealed that mitochondrial damage and mtDNA release induced by 1-BP and high-fat diet activate NLRP3 and cGAS-STING pathway- mediated neuroinflammatory response, and ultimately lead to necroptosis of dopaminergic neurons. In summary, our study unveils a potential link between chronic 1-BP exposure and PD-like pathology with motor and no-motor defects in experimental animals, and long-term high-fat diet can further promote 1-BP neurotoxicity, which underscores the pivotal role of environmental factors in the etiology of PD.


Diet, High-Fat , Dopaminergic Neurons , Hydrocarbons, Brominated , Mice, Inbred C57BL , Mitochondria , Substantia Nigra , Animals , Hydrocarbons, Brominated/toxicity , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Mice , Substantia Nigra/drug effects , Substantia Nigra/pathology , Substantia Nigra/metabolism , Male , Mitochondria/drug effects , Mitochondria/pathology , Solvents/toxicity
9.
Neurobiol Dis ; 195: 106490, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38561111

The auditory oddball is a mainstay in research on attention, novelty, and sensory prediction. How this task engages subcortical structures like the subthalamic nucleus and substantia nigra pars reticulata is unclear. We administered an auditory OB task while recording single unit activity (35 units) and local field potentials (57 recordings) from the subthalamic nucleus and substantia nigra pars reticulata of 30 patients with Parkinson's disease undergoing deep brain stimulation surgery. We found tone modulated and oddball modulated units in both regions. Population activity differentiated oddball from standard trials from 200 ms to 1000 ms after the tone in both regions. In the substantia nigra, beta band activity in the local field potential was decreased following oddball tones. The oddball related activity we observe may underlie attention, sensory prediction, or surprise-induced motor suppression.


Acoustic Stimulation , Deep Brain Stimulation , Parkinson Disease , Pars Reticulata , Subthalamic Nucleus , Humans , Subthalamic Nucleus/physiology , Male , Middle Aged , Female , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Aged , Pars Reticulata/physiology , Deep Brain Stimulation/methods , Acoustic Stimulation/methods , Auditory Perception/physiology , Evoked Potentials, Auditory/physiology , Substantia Nigra/physiology , Adult
10.
Behav Brain Res ; 466: 114979, 2024 May 28.
Article En | MEDLINE | ID: mdl-38582409

OBJECTIVE: Reward anticipation is important for future decision-making, possibly due to re-evaluation of prior decisions. However, the exact relationship between reward anticipation and prior effort-expenditure decision-making, and its neural substrates are unknown. METHOD: Thirty-three healthy participants underwent fMRI scanning while performing the Effort-based Pleasure Experience Task (E-pet). Participants were required to make effort-expenditure decisions and anticipate the reward. RESULTS: We found that stronger anticipatory activation at the posterior cingulate cortex was correlated with slower reaction time while making decisions with a high-probability of reward. Moreover, the substantia nigra was significantly activated in the prior decision-making phase, and involved in reward-anticipation in view of its strengthened functional connectivity with the mammillary body and the putamen in trial conditions with a high probability of reward. CONCLUSIONS: These findings support the role of reward anticipation in re-evaluating decisions based on the brain-behaviour correlation. Moreover, the study revealed the neural interaction between reward anticipation and decision-making.


Anticipation, Psychological , Decision Making , Magnetic Resonance Imaging , Reaction Time , Reward , Humans , Male , Decision Making/physiology , Anticipation, Psychological/physiology , Female , Young Adult , Adult , Reaction Time/physiology , Gyrus Cinguli/physiology , Gyrus Cinguli/diagnostic imaging , Brain Mapping , Brain/physiology , Brain/diagnostic imaging , Substantia Nigra/physiology , Substantia Nigra/diagnostic imaging
12.
Gene Ther ; 31(5-6): 324-334, 2024 May.
Article En | MEDLINE | ID: mdl-38627469

Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurons in various models of Parkinson's disease (PD). Cell-based GDNF gene delivery mitigates neurodegeneration and improves both motor and non-motor functions in PD mice. As PD is a chronic condition, this study aims to investigate the long-lasting benefits of hematopoietic stem cell (HSC)-based macrophage/microglia-mediated CNS GDNF (MMC-GDNF) delivery in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. The results indicate that GDNF treatment effectively ameliorated MPTP-induced motor deficits for up to 12 months, which coincided with the protection of nigral dopaminergic neurons and their striatal terminals. Also, the HSC-derived macrophages/microglia were recruited selectively to the neurodegenerative areas of the substantia nigra. The therapeutic benefits appear to involve two mechanisms: (1) macrophage/microglia release of GDNF-containing exosomes, which are transferred to target neurons, and (2) direct release of GDNF by macrophage/microglia, which diffuses to target neurons. Furthermore, the study found that plasma GDNF levels were significantly increased from baseline and remained stable over time, potentially serving as a convenient biomarker for future clinical trials. Notably, no weight loss, altered food intake, cerebellar pathology, or other adverse effects were observed. Overall, this study provides compelling evidence for the long-term therapeutic efficacy and safety of HSC-based MMC-GDNF delivery in the treatment of PD.


Disease Models, Animal , Glial Cell Line-Derived Neurotrophic Factor , Macrophages , Microglia , Animals , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Mice , Macrophages/metabolism , Microglia/metabolism , Male , Parkinson Disease/therapy , Parkinson Disease/metabolism , Hematopoietic Stem Cells/metabolism , Mice, Inbred C57BL , Dopaminergic Neurons/metabolism , Genetic Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Exosomes/metabolism , Substantia Nigra/metabolism
13.
Exp Neurol ; 376: 114771, 2024 Jun.
Article En | MEDLINE | ID: mdl-38580154

Parkinson's disease (PD) rodent models provide insight into the relationship between nigrostriatal dopamine (DA) signaling and locomotor function. Although toxin-based rat models produce frank nigrostriatal neuron loss and eventual motor decline characteristic of PD, the rapid nature of neuronal loss may not adequately translate premotor traits, such as cognitive decline. Unfortunately, rodent genetic PD models, like the Pink1 knockout (KO) rat, often fail to replicate the differential severity of striatal DA and tyrosine hydroxylase (TH) loss, and a bradykinetic phenotype, reminiscent of human PD. To elucidate this inconsistency, we evaluated aging as a progression factor in the timing of motor and non-motor cognitive impairments. Male PINK1 KO and age-matched wild type (WT) rats were evaluated in a longitudinal study from 3 to 16 months old in one cohort, and in a cross-sectional study of young adult (6-7 months) and aged (18-19 months) in another cohort. Young adult PINK1 KO rats exhibited hyperkinetic behavior associated with elevated DA and TH in the substantia nigra (SN), which decreased therein, but not striatum, in the aged KO rats. Additionally, norepinephrine levels decreased in aged KO rats in the prefrontal cortex (PFC), paired with a higher DA levels in young and aged KO. Although a younger age of onset characterizes familial forms of PD, our results underscore the critical need to consider age-related factors. Moreover, the results indicate that compensatory mechanisms may exist to preserve locomotor function, evidenced by increased DA in the SN early in the lifespan, in response to deficient PINK1 function, which declines with aging and the onset of motor decline.


Aging , Corpus Striatum , Dopamine , Protein Kinases , Substantia Nigra , Tyrosine 3-Monooxygenase , Animals , Tyrosine 3-Monooxygenase/metabolism , Protein Kinases/genetics , Protein Kinases/deficiency , Protein Kinases/metabolism , Substantia Nigra/metabolism , Aging/genetics , Male , Rats , Dopamine/metabolism , Corpus Striatum/metabolism , Motor Activity/physiology , Motor Activity/genetics , Rats, Transgenic
14.
Neuropharmacology ; 252: 109946, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38599494

The spontaneous firing activity of nigral dopaminergic neurons is associated with some important roles including modulation of dopamine release, expression of tyrosine hydroxylase (TH), as well as neuronal survival. The decreased neuroactivity of nigral dopaminergic neurons has been revealed in Parkinson's disease. Central glucagon-like peptide-1 (GLP-1) functions as a neurotransmitter or neuromodulator to exert multiple brain functions. Although morphological studies revealed the expression of GLP-1 receptors (GLP-1Rs) in the substantia nigra pars compacta, the possible modulation of GLP-1 on spontaneous firing activity of nigral dopaminergic neurons is unknown. The present extracellular in vivo single unit recordings revealed that GLP-1R agonist exendin-4 significantly increased the spontaneous firing rate and decreased the firing regularity of partial nigral dopaminergic neurons of adult male C57BL/6 mice. Blockade of GLP-1Rs by exendin (9-39) decreased the firing rate of nigral dopaminergic neurons suggesting the involvement of endogenous GLP-1 in the modulation of firing activity. Furthermore, the PKA and the transient receptor potential canonical (TRPC) 4/5 channels are involved in activation of GLP-1Rs-induced excitatory effects of nigral dopaminergic neurons. Under parkinsonian state, both the exogenous and endogenous GLP-1 could still induce excitatory effects on the surviving nigral dopaminergic neurons. As the mild excitatory stimuli exert neuroprotective effects on nigral dopaminergic neurons, the present GLP-1-induced excitatory effects may partially contribute to its antiparkinsonian effects.


Action Potentials , Dopaminergic Neurons , Exenatide , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Mice, Inbred C57BL , Substantia Nigra , Animals , Male , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Exenatide/pharmacology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Action Potentials/drug effects , Action Potentials/physiology , Mice , Venoms/pharmacology , Peptides/pharmacology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/physiopathology , Peptide Fragments/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism
15.
Zhen Ci Yan Jiu ; 49(4): 384-390, 2024 Apr 25.
Article En, Zh | MEDLINE | ID: mdl-38649206

OBJECTIVES: To observe the effects on tyrosine hydroxylase (TH), α-synaptic nucleoprotein (α-syn), sirtuin 3 (Sirt3), NOD-like receptor 3 (NLRP3) and gasdermin-D (GSDMD) in the substantia nigra of midbrain after electroacupuncture (EA) at "Fengfu"(GV16), "Taichong" (LR3) and "Zusanli" (ST36) in rats of Parkinson's disease (PD), so as to explore the mechanism of EA in treatment of PD. METHODS: SD rats were randomly divided into control, model and EA groups, with 10 rats in each group. The PD model was established by injecting rotenone into the neck and back, lasting 28 days. In the EA group, EA was applied to GV16, LR3 and ST36, 30 min each time, once daily, consecutively for 28 days. The open-field test was adopted to detect the total distance of autonomic movement of rats, and the pole climbing test was used to detect the body coordination ability of rats. In the substania nigra of midbrain, the positive expression of TH was determined using immunohistochemistry, the mRNA expression levels of α - syn, Sirt3, NLRP3 and GSDMD were detected by quantitative real-time fluorescence PCR, and the protein expression levels of NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and cysteinyl aspartate specific proteinase (Caspase)-1 were detected by Western blot. RESULTS: Compared with the control group, the total distance of autonomous movement was decreased (P<0.01) in the model group, and the score of pole climbing experiment was increased (P<0.01);in the midbrain substantia nigra the positive expression of TH was decreased (P<0.01);the mRNA expression level of Sirt3 was decreased (P<0.01), and those of α-syn, NLRP3 and GSDMD were increased (P<0.01);while the protein expression levels of NLRP3, ASC and Caspase-1 were increased (P<0.01). When compared with the model group, the total distance of autonomous movement in open field experiment was increased (P<0.01) in the EA group and the score of pole climbing experiment was lower (P<0.05);in the midbrain substantia nigra the positive expression of TH was increased (P<0.01);the mRNA expression level of Sirt3 in the midbrain substantia nigra was increased (P<0.01), and those of α-syn, NLRP3 and GSDMD were reduced (P<0.01);while the protein expression levels of NLRP3, ASC and Caspase-1 decreased (P<0.01, P<0.05). CONCLUSIONS: EA at "GV16" "LR3" and "ST36" can repair the neuronal injury, clear the abnormal accumulation of α-syn in the substania nigra of midbrain, and ameliorate mitochondrial damage in PD rats, which may be obtained by regulating Sirt3/NLRP3/GSDMD signaling pathway, so as to delay the occurrence and development of Parkinson's disease.


Electroacupuncture , NLR Family, Pyrin Domain-Containing 3 Protein , Parkinson Disease , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 3 , Sirtuins , Substantia Nigra , Animals , Rats , Acupuncture Points , Mesencephalon/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Parkinson Disease/metabolism , Parkinson Disease/therapy , Parkinson Disease/genetics , Sirtuin 3/metabolism , Sirtuin 3/genetics , Substantia Nigra/metabolism
16.
Exp Neurol ; 377: 114780, 2024 Jul.
Article En | MEDLINE | ID: mdl-38649091

Parkinson's disease (PD) is a neurodegenerative disease characterized by dopaminergic neuron death and neuroinflammation. Emerging evidence points to the involvement of the transient receptor potential melastatin 2 (TRPM2) channel in neuron death and glial activation in several neurodegenerative diseases. However, the involvement of TRPM2 in PD and specifically its relation to the neuroinflammation aspect of the disease remains poorly understood. Here, we hypothesized that AG490, a TRPM2 inhibitor, can be used as a treatment in a mouse model of PD. Mice underwent stereotaxic surgery for 6-hydroxydopamine (6-OHDA) administration in the right striatum. Motor behavioral tests (apomorphine, cylinder, and rotarod) were performed on day 3 post-injection to confirm the PD model induction. AG490 was then daily injected i.p. between days 3 to 6 after surgery. On day 6, motor behavior was assessed again. Substantia nigra (SNc) and striatum (CPu) were collected for immunohistochemistry, immunoblotting, and RT-qPCR analysis on day 7. Our results revealed that AG490 post-treatment reduced motor behavior impairment and nigrostriatal neurodegeneration. In addition, the compound prevented TRPM2 upregulation and changes of the Akt/GSK-3ß/caspase-3 signaling pathway. The TRPM2 inhibition also avoids the glial morphology changes observed in the PD group. Remarkably, the morphometrical analysis revealed that the ameboid-shaped microglia, found in 6-OHDA-injected animals, were no longer present in the AG490-treated group. These results indicate that AG490 treatment can reduce dopaminergic neuronal death and suppress neuroinflammation in a PD mouse model. Inhibition of TRPM2 by AG490 could then represent a potential therapeutical strategy to be evaluated for PD treatment.


Mice, Inbred C57BL , Neuroglia , TRPM Cation Channels , Tyrphostins , Animals , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/metabolism , Mice , Male , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/pathology , Tyrphostins/pharmacology , Tyrphostins/therapeutic use , Disease Progression , Oxidopamine/toxicity , Disease Models, Animal , Nerve Degeneration/pathology , Nerve Degeneration/drug therapy , Parkinsonian Disorders/pathology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/prevention & control , Substantia Nigra/drug effects , Substantia Nigra/pathology , Substantia Nigra/metabolism , Parkinson Disease/pathology , Parkinson Disease/metabolism , Parkinson Disease/drug therapy
17.
J Neuroinflammation ; 21(1): 108, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664840

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the presence of proteinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn preformed fibril (PFF) model of synucleinopathy. We have previously determined that microglia proximal to PFF-induced nigral α-syn inclusions increase in soma size, upregulate major-histocompatibility complex-II (MHC-II) expression, and increase expression of a suite of inflammation-associated transcripts. This microglial response is observed months prior to degeneration, suggesting that microglia reacting to α-syn inclusion may contribute to neurodegeneration and could represent a potential target for novel therapeutics. The goal of this study was to determine whether colony stimulating factor-1 receptor (CSF1R)-mediated microglial depletion impacts the magnitude of α-syn aggregation, nigrostriatal degeneration, or the response of microglial in the context of the α-syn PFF model. METHODS: Male Fischer 344 rats were injected intrastriatally with either α-syn PFFs or saline. Rats were continuously administered Pexidartinib (PLX3397B, 600 mg/kg), a CSF1R inhibitor, to deplete microglia for a period of either 2 or 6 months. RESULTS: CSF1R inhibition resulted in significant depletion (~ 43%) of ionized calcium-binding adapter molecule 1 immunoreactive (Iba-1ir) microglia within the SNpc. However, CSF1R inhibition did not impact the increase in microglial number, soma size, number of MHC-II immunoreactive microglia or microglial expression of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, and Fcer1g associated with phosphorylated α-syn (pSyn) nigral inclusions. Further, accumulation of pSyn and degeneration of nigral neurons was not impacted by CSF1R inhibition. Paradoxically, long term CSF1R inhibition resulted in increased soma size of remaining Iba-1ir microglia in both control and PFF rats, as well as expression of MHC-II in extranigral regions. CONCLUSIONS: Collectively, our results suggest that CSF1R inhibition does not impact the microglial response to nigral pSyn inclusions and that CSF1R inhibition is not a viable disease-modifying strategy for PD.


Microglia , Rats, Inbred F344 , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , alpha-Synuclein , Animals , Microglia/metabolism , Microglia/drug effects , alpha-Synuclein/metabolism , Rats , Male , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Pyrroles/pharmacology , Aminopyridines/pharmacology , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Substantia Nigra/metabolism , Substantia Nigra/pathology , Substantia Nigra/drug effects , Disease Models, Animal
18.
Nat Commun ; 15(1): 3631, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684731

Idiopathic Parkinson's disease (iPD) is believed to have a heterogeneous pathophysiology, but molecular disease subtypes have not been identified. Here, we show that iPD can be stratified according to the severity of neuronal respiratory complex I (CI) deficiency, and identify two emerging disease subtypes with distinct molecular and clinical profiles. The CI deficient (CI-PD) subtype accounts for approximately a fourth of all cases, and is characterized by anatomically widespread neuronal CI deficiency, a distinct cell type-specific gene expression profile, increased load of neuronal mtDNA deletions, and a predilection for non-tremor dominant motor phenotypes. In contrast, the non-CI deficient (nCI-PD) subtype exhibits no evidence of mitochondrial impairment outside the dopaminergic substantia nigra and has a predilection for a tremor dominant phenotype. These findings constitute a step towards resolving the biological heterogeneity of iPD with implications for both mechanistic understanding and treatment strategies.


DNA, Mitochondrial , Electron Transport Complex I , Electron Transport Complex I/deficiency , Mitochondria , Mitochondrial Diseases , Parkinson Disease , Parkinson Disease/genetics , Parkinson Disease/metabolism , Humans , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Male , DNA, Mitochondrial/genetics , Female , Mitochondria/metabolism , Mitochondria/genetics , Aged , Substantia Nigra/metabolism , Substantia Nigra/pathology , Middle Aged , Phenotype , Neurons/metabolism
19.
Hum Brain Mapp ; 45(5): e26675, 2024 Apr.
Article En | MEDLINE | ID: mdl-38590155

Isolated REM sleep behavior disorder (iRBD) is an early stage of synucleinopathy with most patients progressing to Parkinson's disease (PD) or related conditions. Quantitative susceptibility mapping (QSM) in PD has identified pathological iron accumulation in the substantia nigra (SN) and variably also in basal ganglia and cortex. Analyzing whole-brain QSM across iRBD, PD, and healthy controls (HC) may help to ascertain the extent of neurodegeneration in prodromal synucleinopathy. 70 de novo PD patients, 70 iRBD patients, and 60 HCs underwent 3 T MRI. T1 and susceptibility-weighted images were acquired and processed to space standardized QSM. Voxel-based analyses of grey matter magnetic susceptibility differences comparing all groups were performed on the whole brain and upper brainstem levels with the statistical threshold set at family-wise error-corrected p-values <.05. Whole-brain analysis showed increased susceptibility in the bilateral fronto-parietal cortex of iRBD patients compared to both PD and HC. This was not associated with cortical thinning according to the cortical thickness analysis. Compared to iRBD, PD patients had increased susceptibility in the left amygdala and hippocampal region. Upper brainstem analysis revealed increased susceptibility within the bilateral SN for both PD and iRBD compared to HC; changes were located predominantly in nigrosome 1 in the former and nigrosome 2 in the latter group. In the iRBD group, abnormal dopamine transporter SPECT was associated with increased susceptibility in nigrosome 1. iRBD patients display greater fronto-parietal cortex involvement than incidental early-stage PD cohort indicating more widespread subclinical neuropathology. Dopaminergic degeneration in the substantia nigra is paralleled by susceptibility increase, mainly in nigrosome 1.


Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , REM Sleep Behavior Disorder/diagnostic imaging , Synucleinopathies/complications , Synucleinopathies/pathology , Brain/diagnostic imaging , Brain/pathology , Substantia Nigra/diagnostic imaging , Substantia Nigra/pathology , Parkinson Disease/complications , Iron
20.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1318-1326, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621979

In order to study the neuroprotective mechanism of cinnamaldehyde on reserpine-induced Parkinson's disease(PD) rat models, 72 male Wistar rats were randomly divided into blank group, model group, Madopar group, and cinnamaldehyde high-, medium-, and low-dose groups. Except for the blank group, the other groups were intraperitoneally injected with reserpine of 0.1 mg·kg~(-1) once every other morning, and cinnamaldehyde and Madopar solutions were gavaged every afternoon. Open field test, rotarod test, and oral chewing movement evaluation were carried out in the experiment. The brain was taken and fixed. The positive expression of dopamine receptor D1(DRD1) was detected by TSA, and the changes in neurotransmitters such as dopamine(DA) and 3,4-dihydroxyphenylacetic acid(DOPAC) in the brain were detected by enzyme-linked immunosorbent assay(ELISA). The protein and mRNA expression levels of tyrosine hydroxylase(TH) and α-synuclein(α-Syn) in substantia nigra(SN) were detected by RT-PCR and Western blot. The results showed that after the injection of reserpine, the hair color of the model group became yellow and dirty; the arrest behavior was weakened, and the body weight was reduced. The spontaneous movement and exploration behavior were reduced, and the coordination exercise ability was decreased. The number of oral chewing was increased, but the cognitive ability was decreased, and the proportion of DRD1 positive expression area in SN was decreased. The expression of TH protein and mRNA was down-regulated, and that of α-Syn protein and mRNA was up-regulated. After cinnamaldehyde intervention, it had an obvious curative effect on PD model animals. The spontaneous movement behavior, the time of staying in the rod, the time of movement, the distance of movement, and the number of standing times increased, and the number of oral chewing decreased. The proportion of DRD1 positive expression area in SN increased, and the protein and mRNA expression levels of α-Syn were down-regulated. The protein and mRNA expression levels of TH were up-regulated. In addition, the levels of DA, DOPAC, and homovanillic acid(HVA) neurotransmitters in the brain were up-regulated. This study can provide a new experimental basis for clinical treatment and prevention of PD.


Acrolein/analogs & derivatives , Parkinson Disease , Rats , Male , Animals , Parkinson Disease/etiology , Parkinson Disease/genetics , Reserpine/adverse effects , Reserpine/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Rats, Wistar , Substantia Nigra/metabolism , RNA, Messenger/metabolism , Neurotransmitter Agents/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
...